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Modeling Phase Equilibria in Polymer-Solvent 
Systems for Process Design 

A. A n d e r k o  2 

An excess Gibbs energy model is presented for calculating phase equilibria 
in multicomponent systems containing polymers and solvents. The model 
represents a combination of a physical contribution obtained from a lattice 
model and a chemical contribution that accounts for association and solvation 
effects. The lattice model is based on a revised version of Freed's lattice-field 
theory developed by Hu, Prausnitz, and co-workers. The model accurately 
represents solvent activities and liquid-liquid equilibria in binary and ternary 
polymer solutions over wide ranges of temperature and polymer molecular 
weight. It is capable of reproducing liquid-liquid equilibria with upper and 
lower critical solution temperatures as well as closed-loop and hourglass-shaped 
phase diagrams. Because of its numerical simplicity, a reasonably small number 
of binary parameters, and its applicability to multicomponent systems, the 
model can be useful for modeling industrial processes involving polymers. 

KEY WORDS: excess functions: lattice model: liquid-liquid equilibria; 
polymer solutions; vapor-liquid equilibria. 

1. I N T R O D U C T I O N  

Model ing of polymer manufac tur ing  processes requires the knowledge of 
phase equil ibria in mul t i componen t  systems con ta in ing  polymers and 
solvents. Therefore, it is necessary to have an accurate excess Gibbs  energy 
model that can be implemented in the env i ronmen t  of a process simulator.  
In particular,  the op t imum method should be capable of representing both 
vapor - l iqu id  and l iquid- l iquid  equil ibria over wide ranges of temperature  
and polymer molecular  weight. It should have a reasonably small n u m b e r  
of adjustable binary parameters  that are defined for polymer segments 
rather than whole molecules. Also, the model should make it possible to 
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use information obtained from binary data to predict the phase behavior of 
multicomponent mixtures. 

The majority of excess Gibbs energy models that can be used for the 
correlation of polymer solution data has been derived from the Flory 
Huggins lattice model [1]  by introducing empirical ft, nctions to represent 
the temperature and composition dependence of the Flory Z parameter 
[2-4] .  An alternative approach is based on local-composition models for 
polymer solutions [5. 6]. In addition to the correlative G E models, several 
group-contribution models have been developed for predicting solvent 
activities [9-11 ]. 

Significant progress in the lattice theory of macromolecules has been 
achieved by Freed and co-workers [7],  whose theory is formally an exact 
solution of the Flory-Huggins lattice. Hu et al. [8]  revised Freed's model 
to simplify its mathematical form and improve agreement with the phase 
behavior of an lsing lattice and molecular simulations for binary 
monomer + multimer mixtures. In this study, we combine the model of Hu 
etal.  [8]  with a chemical contribution to the excess Gibbs energy and 
apply it to the correlation of vapor liquid and liquid-liquid equilibria. 

2. M O D E L  

For binary systems, Hu etal. [8]  obtained an expression for the 
Helmholtz energy of mixing: 

¢Pz "4"~i" ~Pllnq~i+--ln~p~_+g~pl~p2 (1) 
N,.kT t'l r, 

g = ~ -  - +2~:,.+--cP2+--~pl-5 "074~:7~PI(P-" (2) 
r I I %  - 

where N, is the total number of sites on the lattice, r, and r~ are numbers 
of segments of molecules 1 and 2, respectively, and rr= ~:/kT is the reduced 
interaction energy between the segments of molecules 1 and 2. For an 
incompressible, close-packed system, the Helmholtz energy of mixing is 
equal to the Gibbs energy of mixing (i.e.. G,,,~ = A,,,~). 

To extend Eq. (1) to multicomponent mixtures, we recognize that 
Eq. (1) is formally similar to the Flory-Huggins model. The only difference 
is the composition dependence of the factor g. Therefore, the Heimholtz 
energy of mixing for a multicomponent system can be written in analogy 
to that from the multicomponent Flory-Huggins model [2]  as 

NrkT l n~p i+Z  Z g#~/Pi (3) 
" ' i i > i  
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where the go term is, in analogy with Eq. (2), 

- + 2~:r.ij + ~r° q~j + r <p,- 1.074F,;.ocp/pj (4) gii = ---~- 
I" i 2 

The temperature dependence of r.r is expressed as 

~ : r = a j + a 2 / T + a 3 1 n  T (5) 

This form was proposed by Qian et al. [4]  for the Flory-Huggins Z 
parameter  by considering its enthalpy and entropy components. A similar 
reasoning can also be applied to the model considered in this study. 
Preliminary studies have shown that this form of the temperature 
dependence is superior to other forms of similar complexity, especially with 
respect to extrapolation to lower or higher temperatures. In addition to e,~, 
a second adjustable parameter, c,., is introduced to calculate the effective 
chain length of a polymer: 

r+ = cr.it'i/rr~r (6) 

where vi is the molar volume of the polymer and erCr is a reference volume, 
which can be conveniently assumed to be equal to a solvent's molar 
volume. As a first approximation,  the parameter  c~ can be assumed to be 
equal to one, which leaves e, r as the only adjustable parameter  in Eqs. (3) 
and (4). 

For systems with specific interactions, Veytsman [12] developed a 
simple technique for incorporating association and solvation effects into 
the lattice-fluid formalism. If specific interactions play a significant role in 
the mixture, the Gibbs energy of mixing is calculated as a sum of a physical 
and a chemical contributions: 

Gmi  x - (~rphy s G them --~i~ + (7) 

where GP~ ~ is defined by Eq. (3) and G ¢' .... is given, for a close-packed 
lattice, by 

_ '" N ~ l n _ _ +  In i ,  
Nfl<T i j - ~ +  Nr N~ -~ N,, 

i =  1 ..... m, j =  1 ..... n (8) 

where N 0 is the number of bonds between a donor group i and an acceptor 
group j, N~ is the total number of donor sites of type i, N~ is the total num- 

No/- N, - ~i No. ber of acceptor sites of type j, N,.o = N ~ - Z j  N~i, and _ i 
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The quantities N o are obtained by solving a set of nm simultaneous 
quadratic equations: 

" 11 i i t s  Nu=(N'o_~N,k'~(N',,_~Nkj" ~ ( - A g , , ~  
g'---- 7 ~ g r . g r  // ~ g r . g r  /] ex  P ~ ' - - ' ~ - / ]  ' 

i =  1 ..... m, . /= 1 ..... n (9) 

where the standard Gibbs energy of bond formation between a donor of 
type i and an acceptor of type j is related to the enthalpy Ah u and entropy 
As u of bond formation by Ag u= Ah u -  T As u. 

It is worthwhile to examine the effect of solvation on liquid-liquid 
equilibria predicted by the combined model. If the interaction parameter  
~:/k is independent of temperature, the physical contribution to the excess 
Gibbs energy can predict only an upper critical solution temperature 
because it is based on an incompressible, close-packed lattice model. This 
behavior may be changed by introducing association or solvation effects, 
which are accounted for by the G ch'zm contribution. In particular, strong 
solvation may give rise to a lower critical solution temperature. To verify 
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Fig. I. L iqu id - l i qu id  coexistence curve ca lcula ted  for a mix ture  of a 

solvent  (r~ = 1) and  a po lymer  (r ,  = 100) with and wi thout  solvat ion.  
The so lva t ion  en t ropy  is varied, while the so lvat ion  en tha lpy  is kept  at 

a cons tan t  value of - 15 kJ • mol  - ~. The pa ramete r  t:/k is equal  to 120 K 
over  the whole t empera ture  range. 
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this, l iquid-l iquid equil ibrium was calculated for a binary system composed  
of m o n o m e r s  and 100-mers that  are capable  of solvation as the only 
possible specific interaction [i.e., r e = n =  1 in Eqs. (8) and (9)].  For  
simplicity, the number  of solvation (either acceptor  or donor )  sites was 
assumed to be equal to the number  of repeat  units (i.e., N~ = rt N 1 and 
N I , = r 2 N 2 ) .  In this case, only one quadrat ic  equat ion [Eq. (9)]  has to be 
solved for N ~ .  The effect of  solvation is illustrated in Fig. 1, which shows 
the different shapes of the miscibility gap when the en t ropy of solvat ion is 
varied from - 80 to - 64 J • mol - ~ • K i. The  solvation enthalpy is kept at 
a constant  value of - 15 kJ • m o i ] ,  which is typical for hydrogen bonds  of 
intermediate  strength. As shown in Fig. 1, solvation causes the appearance  
of a c losed-loop miscibility gap. The immiscible region rapidly shrinks as 
the solvat ion becomes stronger.  
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0.6 

0.4 

~,lli • Herskowltz and Gotflieb (1985), Mn=1500 

I Malcolm and Rowlinson (1957). Mn=5000 O2 

0 . 0 ~  
0.0 0.2 0.4 0.6 08 1.0 

wl 
Fig. 2. Solvent activity calculated for the system water(1 J-polyethylene 
glycol(2) at T=  333.15 K (data from Malcolm and Rowlinson [13] and 
Herskowitz and Gottlieb [14]). The solid line shows the activity 
obtained when the solvation effects are taken into account with 
the following model parameters: ,Ah ' )= -10 .411kJ -mol  J, As"= 
-27.31 J .moI -L  r.r = 0.7140, and c, = 0.5335. The temperature range for 
the correlation is 293.15 <~ T~< 338.15 K and the molecular weight range 
is 1500~< M,~<6000. The dashed line shows the results obtained when 
the solvation is neglected. 
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3. RESULTS AND DISCUSSION 

Tile model has been applied to correlate vapor-liquid and liquid- 
liquid equilibria in systems containing polymers and solvents. First, the 
usefulness of the chemical contribution was verified by correlating solvent 
activities in the system water + polyethylene glycol (PEG), which exhibits 
strong hydrogen bonding. The results are illustrated in Fig. 2. If the 
chemical contribution is neglected and only e, and Cr are regressed, the 
shape of the solvent activity versus composition curve cannot be correctly 
reproduced (cf. the dashed curve in Fig. 2). On the other hand, the data 
can be very accurately correlated using the chemical contribution (cf. the 
solid curve in Fig. 2). Only one solvation equilibrium has been taken into 
account (i.e., r e = n =  1, N~=r.N~, and N~,=r,_N2). With four adjustable 
parameters (i.e., the enthalpy and entropy of solvation and temperature- 
independent ~, and c, parameters), the solvent activities are accurately 
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Fig. 3. Solvent activity calculated for the system to luene ( l )+  poly(4-bromo- 
styrene--co-4-methylstyrene)(2) at T =  294.15 K (data from Corneliussen et al. 
[ 15] ). The model parameters for the pair toluene + poly(4-bromostyrene) are 
~:,=0.2708 and c , =  I and those for the pair to luene+polyl4-methyls tyrene)  
are ~:, = 0.1573 and c, = I. 
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reproduced for temperatures ranging from 293.15 to 338.15K and 
molecular weights of PEG ranging from 1500 to 6000. It should be noted 
that the use of only solvation equilibria {without self-association) is an 
oversimplification of physical phenomena in this system. However, it is 
entirely sufficient to represent the data within experimental uncertainty. 

It is important that the model be applicable to systems containing 
copolymers as well as homopolymers.  To verify the model's performance 
for copolymers, solvent activities have been computed for the system 
toluene + poly(4-bromostyrene-co-4-methyls tyrene) .  No chemical contri- 
bution is necessary for this system. The interaction parameters er have been 
regressed from the data for two binary systems containing homopolymers:  
toluene + poly-4-bromobenzene and toluene + 4-methylstyrene. The 
parameters c,. have been set equal to 1. In this way, the interaction 
parameters for the segment pairs toluene-4-bromostyrene and toluene- 
4-methylstyrene have been obtained. The interaction parameters between 
the 4°bromostyrene and the 4-methylstyrene segments have been assumed 
to be equal to zero. These parameters have then been used to predict 

,,,( \ f Data: Siowet aL (1972) ] 
I-" 350 ~ { M (polystyrene)~' 
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Fig. 4. Liquid-liquid equilibria calculated for the system 
acetone{lJ+polystyrene(2) for two molecular weights of 
polystyrene (i.e., M,, = 10,300 and 19,800; data from Slow et al. 
[16]). The regressed model parameters are ~:r=-4.100+ 
212.8/T + 0.6475 In T and c, = 0.668. 
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solvent activities for systems containing copolymers with different composi- 
tions. As shown in Fig. 3, the results are very satisfactory. 

Tile model is also capable of reproducing liquid-liquid equilibria with 
good accuracy. This is illustrated in Fig. 4 for the system ace tone+ 
polystyrene. This system shows an upper and lower critical solution point 
or an hourglass-shaped miscibility gap depending on the molecular weight 
of the polymer. It should be noted that the model is based on a close- 
packed lattice, and as a result, it does not reproduce the compressibility 
effects that usually cause the lower critical solution temperatures (LCST). 
Therefore, it is necessary to introduce a sufficiently flexible, empirical tem- 
perature dependence for the energetic parameter e, r. As shown in Fig. 4, the 
LCST phase behavior can be accurately reproduced using Eq. (5) to fit the 
temperature dependence of ~:r. Also, the model correctly reproduces the 
effect of molecular weight on the transition between an hourglass-shaped 
diagram and one with two separate miscibility gaps. Thus, the phase 
behavior of this system can be modeled over a wide temperature range with 
four binary parameters: Cr and the three parameters that determine the 
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Fi 8. 5. L iqu id- l iqu id  equi l ibr ia calculated for the system polystyrene 
( I : :1,1, = 42,800 ) + polystyrene(2; M,,  = 107,000 ) + cyclohexane( .3 ) at 
T= 287.15 K (data from Hashizume et al, [ l 7 ] ). The model param- 
eters are ~:,.~_~=0.137196. ~:,.~3=0.2925, ~:,..,~=0.2925, c,~=0.5811, 
(.,2=0.5811, and (',~= I. 
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temperature dependence of c,. Also, the model accurately represents the 
liquid-liquid behavior of model polydisperse systems as illustrated in Fig. 5 
for a system composed of cyclohexane and two nearly monodisperse 
polystyrene fractions. This indicates that the model can be applied to more 
complex systems containing polydisperse polymers. In a forthcoming study, 
the model will be applied to ternary and multicomponent polymer solu- 
tions and blends containing polydisperse polymers. 
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